SFCDI March 2020 | Machine Learning and Computer Vision in Architecture Workshop at Microsoft – Canceled

We regret to inform the community that due to COVID-19 concerns, we will be cancelling our March 25th event, Machine Learning and Computer Vision in Architecture workshop, which was to take place at Microsoft Reactor. The speaker, Petr Mitev, has kindly agreed to produce a video and it will be posted to our SFCDI YouTube channel next month.


On March 25th (5:00pm-9.30pm PST) , SFCDI  welcomes Petr Mitev , San Francisco, CA 94107 Microsoft Reactor, 680 Folsom St #145.

Speaker: Petr Mitev Computational Design Leader at NBBJ 

I’m an AEC polymath who thrives on diverse problems and solving them through an agile and experimental application of technology. My education and early career were entirely in step with “traditional” architecture pedagogy and values: earning BS and M-Arch degrees at the University of Cincinnati, while simultaneously working with firms in the US and abroad to build a portfolio of diverse experience. After graduating, I joined KieranTimberlake as an architect, and later moved to the Research Group to start the Design Computation Core as the firm’s first Computational BIM Leader. After several years there, I joined NBBJ in a similar role and in 2018 transitioned to lead the firm-wide NBBJ Design Computation Team. Currently, I’m focused on working with our Director of Digital Innovation to design & deploy custom software solutions which empower us and our partners to deliver the best possible designs to our clients and communities.

Featured Workshop:

This workshop is a crash-course in accessible and practical machine learning, with a focus in computer-vision models. We’ll learn about popular ML models by building our own small  IoT application which will use the models to generate data, and then we’ll dive into making our own simple predictive model from the gathered data to make predictions based on what our IoT sensor has collected.

For this workshop, we’ll be using JavaScript to leverage Google’s Tensorflow library for the pre-trained image recognition models, and the Brain.js library for creating our own models for prediction. All skill levels are welcome, and those with experience with a dynamically interpreted language such as JavaScript or Python are especially encouraged to attend.

Learning Opportunities:

Real-time Spatial Analysis – Using Google’s coco-ssd and mobile-net v2 models, we’ll extract information from images/videos that come from a simple IOT sensor camera (or a webcam for the purpose of the workshop) which can be used to inform design and/or a post-occupancy evaluation of a space. Some of the types of information we can try to extract are:

  • How many people are in the space.
  • Whether the space is highly trafficked, or it is a sedentary meeting spot.
  • What other kinds of objects/entities are in the space.
  • Whether any custom objects are present (type of furniture, plant, light, etc.)

We can then use the collected data to make predictions such as:

  • When the space will be most/less occupied (when lighting and HVAC systems should be turned down/up).
  • What kind of furniture distribution is optimal for the space (how much seating spaces, standing, meeting spots, informal gathering, etc.)?

Bonus Presentation

Matthew Gilbert of ICAIR (remote) presenting “Layout Optimization of Building Structures” & new tool for Rhino/Grasshopper

Attending in person?  Come to Microsoft Reactor, register here
Attending on-line?  We will live stream worldwide here

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s